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Abstract
Reverse Monte Carlo (RMC) modelling is a general method of structural
modelling based on experimental data. RMC modelling can be applied to many
different sorts of data, simultaneously if wished. Powder and single-crystal
neutron diffraction (including isotopic substitution), x-ray diffraction (including
anomalous scattering) and electron diffraction, extended x-ray absorption fine
structure and nuclear magnetic resonance (magic angle spinning and second
moment) have already been used to provide data. RMC modelling can also be
applied to many different types of system—liquids, glasses, polymers, crystals
and magnetic materials. This article outlines the RMC method and discusses
some of the common misconceptions about it. It is stressed that RMC models
are neither unique nor ‘correct’. However, they are often useful for aiding our
understanding either of the structure itself, or of the relationships between local
structure and other physical properties. Examples are given and the possibilities
for further development of the RMC method are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The physical properties of materials are determined by their atomic structure, so the measure-
ment of experimental data related to the structure, and the production of structural models
based on this information, are fundamental to condensed matter science. For most of
the twentieth century the emphasis was on crystalline materials, and numerous methods
were developed for producing or refining models of the (time-average) structure of crystals
based on experimental data. However, non-crystalline materials are of equal, if not greater,
technological importance (e.g. liquids, glasses, polymers), yet our structural understanding
of these is still relatively primitive and few methods of structural modelling have been
developed.

Reverse Monte Carlo (RMC) modelling is a general method of structural modelling based
on experimental data [1]. RMC modelling was originally developed for application to the
structures of liquids and glasses but has now also been applied to crystalline and magnetic
structures [2–5]. Many different sorts of data can be used and many different types of system
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can be modelled [6–13]. There are over 400 papers published using RMC methods, yet it
is still not unusual to hear comments such as ‘It doesn’t work’ or ‘I don’t believe it’. Such
reactions are due to some common misconceptions. RMC modelling is a method of structural
modelling. Its aim is to produce a model, or a series of models, that is consistent with the
available data and with any other information supplied in the form of constraints. It is not
sensible to ask ‘Is the model correct?’, since this can in any case never be known. Instead
one should ask ‘Is the model useful?’. Can it, for example, aid in our understanding of the
relationship between the structure and some particular physical property, or help us to suggest
further experiments?

This paper reviews the RMC method and its applications. Since the algorithm has been
described in detail elsewhere [3, 5, 6, 9–13] it is only outlined briefly, but with sufficient
information for those unfamiliar with the method to follow the rest of the paper. Some of
the common misconceptions and criticisms are discussed in detail, though they are often
philosophical rather than scientific.

Even if RMC modelling is criticized, its greatest success has undoubtedly been to
demonstrate that three-dimensional structural models of disordered materials can indeed
be produced on the basis of experimental data. This has stimulated the development of
derivative and related methods, sometimes with the aim of ‘correcting’ particular aspects
of RMC modelling, and these are discussed. It has also been realized that RMC modelling
is not competitive with methods of computer simulation, such as Monte Carlo or molecular
dynamics. Rather it is complementary. RMC modelling emphasizes the importance of any
form of three-dimensional modelling, but also the importance of details of the experimental
data in understanding real (rather than model) materials.

While other methods may provide ‘better results’ in particular cases, the main strength of
RMC modelling is its generality. Examples are given of the application of RMC modelling to a
wide variety of types of structure, showing clearly that it is indeed a useful aid to understanding.
Finally the prospects for further development are discussed.

2. The RMC method

2.1. The basic RMC algorithm

RMC modelling is a variation of the standard Metropolis Monte Carlo (MMC) method [14].
The aim is to produce a structural model (i.e. an ensemble of atoms, usually referred to as
a configuration) which is consistent with one or more sets of experimental data within their
errors and subject to a set of constraints. The errors are assumed to be purely statistical and to
have a normal distribution (this will be discussed in more detail later). The method is outlined
here for application to neutron diffraction data for a liquid or glass. The extension to different
data types has been described elsewhere (e.g. [5]). The most widely used program which
implements this algorithm is known as RMCA [9].

(1) N atoms are a placed in a cell with periodic boundary conditions, i.e. the cell is surrounded
by images of itself. Normally cubic cells are used but other geometries may be chosen,
e.g. to make a supercell of a crystalline unit cell. The cell dimensions should be as equal as
possible. The atomic number density should be the same as the experimental value. The
positions of the atoms may be chosen randomly; they may have a known crystal structure
or they may be taken from a different simulation or model. The combination of atom
coordinates and cell geometry/dimensions is known as a configuration.
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(2) Calculate (C) the partial radial distribution functions (also known as the pair distribution
functions) from the configuration:

gCoαβ (r) = nCoαβ (r)

4πr2 dr ρcα
(1)

ρ is the atomic number density, cα is the concentration of atoms type α and nCoαβ (r) is the
number of atoms type β at a distance between r and r + dr from a central atom of type
α, averaged over all atoms as centres. Superscript o means ‘old’ and its significance will
become clear in the following steps.

(3) Fourier transform gCoαβ (r) to obtain the partial structure factors:

ACoαβ (Q) = ρ

∫ ∞

0
4πr2(gCoαβ (r)− 1)

sinQr

Qr
dr (2)

where Q is the momentum transfer.
(4) Calculate the total structure factor

FCo(Q) =
∑

cαcβbαbβ(A
Co
αβ (Q)− 1) (3)

where bα is the coherent neutron scattering length for atom type α.
(5) Calculate the difference between the measured total structure factor, FE(Q), and that

determined from the configuration, FCo(Q):

χ2
o =

m∑
i=1

(FCo(Qi)− FE(Qi))
2/σ 2(Qi) (4)

where the sum is over the m experimental points and σ nominally represents the
experimental error. Note that the minimum Qi-value used should be larger than or equal
to 2π /L, where L is the minimum dimension of the configuration.

(6) Move one atom at random; in practice there is a maximum move distance. If any two
atoms approach closer than a predefined (cut-off) distance, then the move is rejected, a
new atom is chosen and a new move is made.

(7) Calculate the new partial radial distribution function, gCnαβ (r), the new partial structure
factors, ACnαβ (Q), the new total structure factor FCn(Q), and the difference

χ2
n =

m∑
i=1

(FCn(Qi)− FE(Qi))
2/σ 2(Qi). (5)

(8) If χ2
n < χ2

o , then the move is accepted, i.e. the ‘new’ configuration becomes the ‘old’
configuration. If χ2

n > χ2
o it is accepted with probability exp(−(χ2

n − χ2
o )/2). Otherwise

it is rejected.
(9) Repeat from step 6.

As the number of accepted atom moves increases, χ2 will initially decrease until it reaches
an equilibrium value, about which it will then oscillate. The resulting configuration should be a
three-dimensional structure that is consistent with the experimental data within its errors. Here
we have chosen to fit the structure factor, although a radial distribution function determined
from the experimental data could also be fitted. Figure 1 shows an example of RMC modelling
of a simple test system.

In MMC modelling the quantity sampled is (U 2
n − U 2

o )/kT where U is the potential
energy of the configuration based on a given interatomic potential, T is the temperature and
k is Boltzmann’s constant. The structure factor therefore plays the role of the energy, i.e. it
‘drives’ the model, and σ plays the role of the temperature. The exact definition of χ2 is
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Figure 1. An example of RMC modelling of a simple test system. The configuration (two-
dimensional) is shown on the right and on the left gC(r) (solid curve) is compared to the target
data, gE(r) (broken curve), obtained by Metropolis Monte Carlo simulation using a Lennard-Jones
potential. The starting configuration is at the top, the final configuration at the bottom and two
intermediate configurations in between. In this example a total of 2500 accepted moves were made.
Note that gC(r) is statistically noisy due to the small model size.
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not particularly important. The aim of MMC modelling is to produce a configuration with
a Boltzmann distribution of energies, but the aim of RMC modelling is simply to produce a
model which is consistent with the data within its errors, of which systematic errors (with an
unknown distribution) are usually the most important. The form of χ2 is chosen because the
analogy with MMC modelling is convenient, and because it works!

There are several key features of the RMC algorithm, which made it generally successful
compared to earlier attempts or related methods (e.g. [15–18]).

(1) Periodic boundary conditions are used to avoid edge effects, and in practice models are
large (at least several thousand atoms) to avoid finite-size effects.

(2) Some moves that increase χ2 are accepted, so the result can be (in principle) independent
of the initial configuration.

(3) If possible the experimental data are fitted (e.g. the total structure factor), as opposed
to function(s) derived from the data (e.g. the partial radial distribution functions), or a
set of parameters derived from the data (e.g. short-range-order parameters [17, 18]). This
makes it much easier to understand the effects of errors. For example, if three total structure
factors measured by means of neutron diffraction with isotopic substitution are available
and one contains significant errors, then this will be obvious immediately, whereas if three
partial radial distribution functions derived from the data are fitted, then all will contain
significant errors.

(4) No interatomic potential is used in the conventional sense, though the atomic closest-
approach constraint can be thought of as a hard-sphere potential. RMC modelling can
therefore be applied to any system. Other aspects of the use of potentials are discussed later.
The lack of a potential has the disadvantage that RMC models have no thermodynamic
consistency. However, use of a potential can imply some contradictions. If the potential is
fixed and is not compatible with the data, then either χ2 can be minimized, or the energy,
but not both. If the potential is modified to fit the data, then the form of the potential must
be appropriate. If a wrong form is chosen (e.g. a two-body potential when many-body
forces are significant), then this may bias the fitting towards a wrong result. The use of
potentials is discussed further in section 5.3.

The RMC algorithm is easily modified for simultaneous fitting to different sets of data,
as long as the function representing the data (e.g. F(Q)) can be calculated in terms of the
configuration. For each data set a separate χ2 is defined and these are simply summed. Data
sets are weighted relative to each other by the use of different σ -values. The types of data
which have been used are from neutron diffraction (including isotopic substitution (e.g. [19])),
x-ray diffraction (including anomalous scattering (e.g. [20])), electron diffraction [8], extended
x-ray absorption fine structure (EXAFS (e.g. [21])) and NMR (magic angle spinning [22] and
second moment [23]). The largest number of data sets that have been simultaneously fitted so
far is five, from four different experimental techniques [23, 24]. In practice the limitation is the
experimental difficulty of collecting consistent multiple data sets, rather than the RMC method.
A particular advantage of RMC modelling is that data sets can be measured over different ranges
and with different resolutions and can even contain ‘holes’; e.g. known ‘bad’ data points can
be removed. However, clearly RMC modelling cannot replace missing information.

2.2. Constraints

Another key feature of the RMC method is the use of constraints. The most important are the
density and the use of closest approaches (cut-offs); these are a necessary part of the basic
algorithm. The initial factor determining any structure is packing, so it makes sense to include
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it from the start. Without these constraints, RMC modelling would be able to fit any data set,
however large the errors, as long as the number of data points was less than the number of
variables in the modelling (i.e. 3N). However, with the constraints, the atomic coordinates
are no longer free variables; instead they are highly constrained. This is easily demonstrated
by the fact that RMC modelling cannot fit many data sets, since they contain significant
systematic errors. Indeed the application of density and closest-approach constraints allows
simple systematic errors, such as incorrect normalization or a constant background, to be
corrected for automatically during RMC modelling.

The choice of cut-offs is not always obvious and can be important if insufficient data
are available. Since there must be at least one data set, the shortest cut-off can always be
estimated from direct determination of the radial distribution function. In the absence of any
other information this should also be used as the cut-off distance for all atom pairs. If several
data sets are available, then it may be possible to estimate cut-offs for several atom pairs. In
most cases it is also possible to make estimates using other information, for example atomic
or ionic radii and results for related systems. In the absence of detailed information, cut-offs
should always be underestimated, since otherwise this biases the resulting structure and can
lead to poor fitting of the data.

The next most commonly used constraint is on atomic coordination. In a sense this acts
to mimic covalent bonding and hence could be thought of as a form of many-body potential.
It can be applied in a number of ways, either as a ‘hard’ or ‘soft’ constraint. A coordination
number is defined as the number of atoms of type β within two fixed distances of one of type
α. Normally the lower fixed distance is the closest approach of atoms α and β. If we define
the fraction of atoms of type α in the configuration which satisfy the coordination constraint
as fRMC , and the required fraction as freq , then a term

χ2
coord = (freq − fRMC)

2/σ 2
coord (6)

is added to the overall χ2. σcoord is used to weight the coordination constraint relative to the
data. If it has a very small value (effectively zero), then the constraint is ‘hard’, so once an
atom has attained the required coordination it cannot lose it. A larger value of σcoord , i.e. a soft
constraint, will act to increase the probability of the chosen coordination. Clearly multiple
constraints may be applied just by adding more χ2-terms. Atom types may be mixed. For
example in vitreous silica one may constrain all Si to be coordinated to four O and all O to two
Si, while in hydrogenated amorphous Si one may constrain all H to be coordinated to one Si
and all Si to be fourfold coordinated but to any combination of Si and H.

The average atomic coordination can also be constrained. This is rarely used, but might
be appropriate if for example a set of EXAFS data could be used to give an approximate value
for an average coordination number, but for some reason the data themselves could not be
modelled directly.

Another method is to constrain the coordination of individual atoms, rather than atom
types, e.g. atom 247 in the configuration is coordinated to atom 591 [25]. This is a hard
constraint and is applied by providing a list of constrained atom pairs and distances. For
example, in liquid CS2 the intermolecular and intramolecular C–S distances overlap so an
atom type constraint does not work. However, if each individual C atom is constrained to be
coordinated to two individual S atoms, then individual CS2 molecules are maintained regardless
of the positions of other molecules. Rather complex units such as polymers can be maintained
in the same way.

In principle constraints of any required complexity can be applied. Those described
so far apply to pairs of atoms. Three-atom constraints, such as on bond angles, can also be
applied [26, 27]. However, it should be noted that these are considerably more computationally
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expensive. In the same way, application of too many hard constraints, as might be required to
describe large rigid molecules, can become too expensive to be practical.

2.3. Consistency of data and constraints

All experimental data contain errors, which are commonly underestimated. This means that,
even if a constraint is ‘known’ to be correct, it might not be consistent with a particular data
set. Similarly different data sets might not be consistent with each other. In such cases an
RMC model cannot be expected to fit all of the data and constraints—this may be a fault
of the model (it may be stuck in a ‘local minimum’), but more frequently it is the fault of
the data or constraints. For example, relatively rigid covalent bonds give rise to high-Q
oscillations in a neutron diffraction pattern. However, inelastic scattering effects can broaden
and de-phase these oscillations in a way that we do not yet know how to correct for. This
can result either in a coordination number from the data that differs from the ‘correct’ value,
or an effective broadening of the allowed bond lengths compared to those obtained from
e.g. spectroscopy. If the RMC model is constrained to the ‘correct’ coordination or a narrow
bond-length distribution, then it will not fit the data as well. It must be left to the judgment of
the user whether the constraint or data is given greater weighting. For example, it is normally
considered that the Si–O coordination in vitreous silica is fourfold. However, an excellent fit
to neutron and x-ray diffraction data, as shown in figure 2, is only achieved with a coordination
of 3.75 [28].

It has already been noted that the imposition of fixed density and closest-approach
constraints in RMC modelling allows automatic correction for flat background and normal-
ization errors in the experimental data. Another typical systematic error is a low-order-
polynomial background, and while RMC modelling cannot correct for this it is also normally
not possible to fit it, since it would imply atoms at unphysically close distances. If the difference
between RMC fit and data has this form, then it is usually a reliable indication of an error in
the data. If the error is uncorrelated with the form of the data, then an approximate correction
can be made by simply subtracting a polynomial fitted to the difference (this is also possible
using the MCGR program [29]). However, if the error is correlated with the form of the data,
such as in the case of magnetic scattering that has been ignored, then the data-fit difference
may not be a good representation of the error and should not be used as a correction.

These features make RMC modelling a valuable tool for data quality control. Even if a
user only produces the simplest atomic model, and never even looks at it, the comparison of
data and RMC fit can provide very rapid feedback on the individual quality and consistency
of different data sets.

2.4. Creating initial configurations

Although the result of RMC modelling is in principle independent of the starting configuration,
subject to the constraints applied, in practice this condition takes too long to achieve except
for the simplest liquids. The creation of initial configurations is therefore a key step, and so
some comments on different methods should be made here. We will restrict ourselves to those
methods closely associated with RMC software and methodology. A common approach is to
use the RMCA program but without fitting to any data. This is then equivalent to a hard-sphere
Monte Carlo simulation (HSMC, or CSHMC if coordination constraints are applied).

When modelling non-molecular liquids, the simplest approach is to create a random
configuration of points and then run HSMC to equilibrium with appropriate cut-offs. For
molecular liquids the molecules must be ‘predefined’ since the later application of coordination
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Figure 2. Experimental structure factors (solid curves) for vitreous SiO2 derived from (a) neutron
diffraction and (b) x-ray diffraction compared to RMC fits (dashed curve). (c) gSiO(r) (solid curve),
gOO(r) (dashed curve) and gSiSi(r) (dotted curve) from the RMC model [28].

constraints may produce a high proportion of molecules, but it will not be 100%. If a con-
figuration of molecules with random positions and orientations is created, then there will
initially be some intermolecular distances that are too short. Individual atom coordination
constraints within CHSMC can be used to maintain the bonding while satisfying the required
cut-offs. Atom type coordination constraints should not be used.

Polymers are rather complex molecular liquids and here different methods are required.
Random-walk procedures that build chains monomer by monomer, back-tracking when
monomers overlap, work well for simple monomers but can rapidly become stuck for long
chains of monomers with bulky side groups. Potential-based methods are possible where
single straight chains are made and then relaxed—however, these methods can prevent certain
chain topologies which can occur in reality. For RMC modelling a hybrid method has been
developed [30], which can be illustrated for the case of polypropylene oxide [31]:

C C O

H

H H

n

C(3) H3

H

H

(1) (2)
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(1) The initial backbone chain, (–C(1)–C(2)–O–)n, is created by a standard random-walk
procedure, with the configuration dimensions determined from the required density for
the complete polymer. Since there is plenty of free volume, this is a simple procedure.
The chain ends are terminated appropriately.

(2) The next step is to place two H atoms unphysically close to carbon C(1) and one carbon C(3)

and one H atom close to C(2). CHSMC is run, using appropriate constraints to maintain
the bonding, until the required cut-offs are satisfied.

(3) Three H atoms are similarly added close to C(3) to produce a CH3 group, and CHSMC is
again run.

This type of procedure is relatively slow but it can be used to produce polymers of any
complexity.

For modelling liquids it is not advisable to start from a crystal structure, even at the
correct density for the liquid, since there is still usually not enough free volume for the crystal
to ‘melt’ completely. The result will be a highly disordered crystal, not a liquid, though this may
not be obvious from the calculated structure factor or even from looking at the configuration.
However, for modelling crystals it is clearly advisable to start from the average crystal structure,
as determined by one of the conventional crystallographic methods. Wherever possible the
lattice parameters should be obtained from the same data that are to be fitted with RMC
modelling, to ensure consistency.

The most complex systems for which to produce initial configurations are network glasses.
The use of coordination constraints means that the complete network topology remains fixed
during fitting, so RMC modelling is restricted to relatively limited refinement of the initial
coordinates. Nevertheless the method has been surprisingly successful, which indicates that
in many cases the bonding topology, largely determined by the chemistry, is the key to the
structure. For (K2O)x(SiO2)1−x glasses the following procedure was used [22].

(1) A random configuration of Si atoms is created, at a density corresponding to that in the
final glass.

(2) CHSMC is run with coordination constraints on Si neighbours. Numbers for twofold,
threefold and fourfold coordination correspond to the numbers of Si with two, three or
four bridging oxygens required in the final model, these numbers being determined from
magic angle spinning NMR data. The Si–Si distances are set to be less than twice the
allowed range of Si–O distances in the final model. A constraint can also be applied to
prevent the formation of three-membered rings if required [22].

(3) When the coordination constraints are satisfied, O atoms are added at all Si–Si bond
centres. These are the bridging oxygens.

(4) O atoms are added near to Si atoms which have fewer than four O neighbours. These are
the non-bridging oxygens.

(5) CHSMC is run with a constraint of fourfold Si–O coordination and twofold O–Si
coordination until all closest-approach constraints are satisfied. A constraint on the
Si–O–Si bond-angle distribution can also be applied if required [27].

(6) The result is a silicate network with the required topology. K atoms are then added at
random.

3. Some common misconceptions

So far we have largely described the technical details of RMC modelling. However, it is
important to also take a more general overview in order to avoid some common misconceptions
about the method, and related criticisms. The most usual criticism is that RMC models are not
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unique, which leads illogically to the statement that they are therefore not correct and hence
the method is not useful. Several points must be made here.

• One can never know the ‘true’ structure of any material, in the sense that one knows the
exact positions of all the atoms, or even of any subset of the atoms. This applies to both
crystalline and non-crystalline materials. For a start the structure is not static. Even in
the simplest case, and except at zero temperature, atoms vibrate, so there is a difference
between the time-average atomic positions and the positions at an instant in time.

• Experimental data provide incomplete information about correlations between atoms
(e.g. diffraction) or projections of some density distribution (e.g. electron microscopy).
From this incomplete information scientists normally try to make a model which is a useful
description of some aspect of the ‘structure’. The fact that this might be called ‘solving
the structure’ rather than ‘making a model’, does not mean that the ‘solution’ is either
unique or correct. RMC modelling is no different in this context from any other method
of structural modelling.

• An RMC model is not unique. This is one of the main advantages of the method—it is not
a disadvantage. If a method can only produce a single model, then that model is unique
to that method, but that does not mean either that it is ‘correct’ or that no other model is
possible based on the same data.

• RMC modelling allows one to explore, for example by the imposition of different
constraints or the use of different initial configurations, a range of structural models that
are consistent with the available data. However, because there will always be an infinite
set of consistent structural models (regardless of the number, type or quality of the data)
the user must make some choice as to how far to go. Different models could be used to
make predictions of the results to be obtained by further experiments, which could then
be tested. Such an application of RMC modelling is therefore an excellent example of
classical scientific methodology!

• This brings us to the key point. RMC modelling is a method of structural modelling—
nothing else. However, the atomic coordinates in the model are of themselves of no direct
interest. What matters is whether the models are useful. Can they be used to help our
understanding of some aspect of the material, for example the relationship between the
structure and some physical property?

Some more detailed points can also be made.

• RMC models are statistical. They will always contain, at some level, errors (‘structural
defects’) which can be readily identified but not always so readily removed. Indeed
sometimes defects in the model are intrinsic to errors in the data and attempting to remove
them will only produce different defects. A small number of defects does not necessarily
invalidate the usefulness of a model.

• RMC models are sometimes criticized because they do not show certain features which are
‘known’ to be correct. This is not the fault of the methodology. RMC models are based on
the data and constraints provided. If the missing features do not necessarily follow from
the data and constraints provided, then they must be based on additional information that
has not been provided. If that information was provided, either in the form of additional
data or constraints, then the missing features should ‘appear’. The same would apply to
features that do appear in the model but are ‘known’ to be wrong.

• However, it is not unusual to find that ‘known’ features are only ideas that have been
suggested to explain previous data. (As the literature on a subject develops ‘X has proposed
· · ·’ becomes ‘X has shown · · ·’ and finally ‘It is well known that · · ·’.) If an RMC model
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independently produces the proposed feature, then this lends strong support to the idea. If
it does not, then the feature may still be shown to be consistent with the data by imposition
of a suitable constraint. On the other hand, it may be found to be inconsistent. Sometimes
even apparently opposing features are found to be consistent with a single model [32]!

• If an RMC model produces features that are ‘unexpected’, they should not simply be
dismissed. Again, an objective approach is more valuable than a subjective reaction.
RMC modelling tends to produce the most disordered structure that is consistent with the
data and constraints (though in practice this is also dependent on the starting configuration
and the exact run parameters chosen). It is therefore unlikely that unexpected order will
appear unless driven by the data and constraints, so such features should be considered
seriously. Conversely there is a tendency to follow Occam’s razor, that if a simple solution
to a problem can be found, then it tends to be the correct solution, and hence to dismiss
apparently complex solutions. In the case of disordered structures that are driven by
entropic forces, for example, this might be a mistake.

Some of the misconceptions arose due to a paper by Evans [33] during the early days of
RMC modelling. He showed that for a system which can be described by a pairwise-additive
potential (i.e. two-body forces only), there is a unique functional relationship between the pair
correlation function and the potential. The potential determines all higher-order correlation
functions and hence the ‘structure’. This was misinterpreted by some (not by Evans) as
suggesting that RMC modelling should produce the ‘correct’ answer, and if it did not, then
the method must be wrong. However, the result is not directly relevant to RMC modelling, for
four reasons.

• The pair correlation function (or correspondingly the structure factor) must be known
exactly and over an infinite range. Real data are neither exact nor infinite.

• We do not know what the functional relationship is, merely that it exists.
• Only a relatively limited number of systems are described adequately by pairwise-additive

potentials.
• The theory only states that the exact pair distribution function is required to obtain the pair

potential uniquely, and hence all of the higher-order correlation functions. It says nothing
about how sensitive any of these functions are to deviations from exactness (this point has
recently been made by Soper [34]).

Evans’ result is certainly relevant to RMC modelling in an indirect sense, since it suggests
that an accurately measured structure factor does contain a great deal of information about both
two-body and higher-order correlations, and that the information content increases with the
accuracy and range of the data. However, if the many-body contributions to the potential are
large, then two-body data are likely to be insufficient, hence the introduction of e.g. coordination
constraints in RMC modelling.

There have been several test studies of RMC modelling to investigate the extent to
which many-body correlations can be derived from the pair correlation function or structure
factor. Howe and McGreevy [35] found that for a monatomic system simple three-body
correlations were well reproduced, though the statistical fluctuations in both two- and three-
body correlations tended to be suppressed. For a model of diatomic molecules, i.e. one with
significant non-pairwise-additive forces, unconstrained RMC modelling does not work. It
produces a mixture of atomic coordinations, even if the required (onefold) coordination does
dominate. However, if an appropriate coordination constraint is applied, then reasonable
results were obtained. Colognesi et al [36] also looked at orientational correlations for model
diatomic molecules, but came to the conclusion that RMC modelling did not reproduce them
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well. However, Soper [34] has performed a series of test studies which show that a variety
of two-body potentials can be generated using the EPSR method (see section 5.3), both for
atomic and molecular systems, which reproduce the original three-body correlations well. This
supports the conclusions of Howe and McGreevy [35].

The different conclusion of the Colognesi et al study [36] may be due to the method of
‘quality assessment’ used. Five specific orientational correlation functions were calculated,
but the typical fluctuations were not determined. For example, how much do the functions
vary between individual configurations of the original model, or with small variations in the
angular limits defining them, i.e. how significant are the differences between RMC modelling
and the original model when analysed in terms of these functions? Soper [34] used a single
general angular correlation representation, illustrated in figure 3. Here the ‘quality assessment’
is made on a visual basis.

Figure 3. The spatial density function for water derived from EPSR modelling [34]. At the centre
of the plot a water molecule is shown with a set of coordinate axes. The density surfaces outside
this correspond to the relative density of water molecules as a function of polar coordinates (r, θ, φ)
within this coordinate system. The isosurface shown corresponds to a density of 1.35 × the bulk
water density.

While this type of test study is interesting, it must still be stressed that the results of
modelling ‘real’ data, whether using RMC modelling or any other method, should always
be approached with both caution and an open mind. If specific many-body correlations are
of detailed interest, then appropriate constraints should be used to explore the range of such
correlations consistent with the data.

4. Variations on the basic RMC method

4.1. Rigid molecules

For relatively rigid molecules it may not be efficient to move individual atoms, so a separate
RMC program (RMCMOL) was developed in which the ‘moves’ consisted of translations and
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rotations of predefined groups of atoms, i.e. molecules [37, 38]. However, in practice it was
found that this was no more efficient than atom moves. Because of the strong steric constraints,
only small moves of molecules were accepted with any high probability. In addition there were
some specific disadvantages.

• The molecule must be predefined. The relevant information is usually obtained by fitting
to the high-Q part of the structure factor to obtain the intramolecular form factor. The
form factor is in fact largest at lowQ, but in this region it overlaps with the intermolecular
correlations. Any error in fitting the form factor will be magnified at low Q and lead
to an error in the intermolecular structure factor which is the function being fitted in
RMCMOL. This problem is well illustrated by work on liquid phosphorus where a rigid-
molecule approach could not obtain a good fit to the data [39], whereas an atomic model
with coordination constraints could [40].

• In calculation of the structure factor the intramolecular motions are taken care of by
introducing a Debye–Waller factor into the form factor. However, the actual RMC model
only contains rigid molecules. This is an inconsistency since the model now effectively
has a larger free volume than is available in reality. This has also been given by Soper
[34] as one of the reasons that (Monte Carlo or molecular dynamics) simulations of water
using rigid molecules do not agree well with experimental pair distribution functions.
Obviously the rigid-molecule approach becomes less applicable as the molecules become
more flexible.

4.2. The convolution method for powder crystalline materials

In section 2.1 it has been stated that RMC modelling can be used to fit to the experimental
structure factor, FE(Q), or the radial distribution function, gE(r). Either FC(Q) is obtained
by Fourier transforming gC(r), or gE(r)must be obtained by transforming FE(Q). In neither
case do we want to have errors introduced by truncation of the function being transformed. To
obtain gE(r) this means that we must measure FE(Q) to a high Q-value, or use an inverse
method to obtain gE(r) (e.g. MCGOFR [41] or MCGR [29]). To obtain FC(Q) we need to
make the RMC configuration large enough that gC(r) is flat at the highest r-value which can
be calculated (half of the cell edge in the case of a cubic cell). For most liquids and glasses this
condition is satisfied with models of a few thousand atoms. However, for crystalline materials,
which have long-range order, it would require models of billions of atoms. Two approaches
can then be used. Either we can model gE(r), or we can model FE(Q) but take into account
the r-space truncation due to the finite RMC model size [42]. This is done by convoluting
FE(Q) with the Fourier transform of the truncation function:

m(r) =
{

1 r < L/2

0 r > L/2.
(7)

Mellergård [43] has pointed out that the equations originally given by Nield et al [42] are
not strictly correct and that the function to be convoluted is actually QFE(Q), i.e.

FEL (Qj) = 1

πQj

∫
QiF

E(Qi)

(
sin(|Qi −Qj |L/2)

|Qi −Qj | − sin(|Qi +Qj |L/2)
|Qi +Qj |

)
dQi. (8)

Figure 4 shows an example of convoluted data and a fit for ND4Cl [44]. The error in
the equations explains the fact that the oscillations in the fit at low Q are slightly larger than
those in the convoluted data. The figure also shows that the convolution method must still
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Figure 4. (a) FE(Q) measured experimentally for ND4Cl [44]. (b) Convoluted FEL (Q) (solid
curve) and the RMC fit (dashed curve).

necessarily lose information on long-range order since it introduces an effective Bragg peak
broadening—weak peaks tend to ‘disappear’, particularly when they are close to strong peaks.
For this reason a new method was developed for crystalline materials, as described in the next
section.

4.3. Direct calculation method for powder crystalline materials

The direct calculation method for powder crystalline materials has been implemented in the
RMCPOW program and described in detail elsewhere [12, 13, 45, 46]. The configuration
cell is chosen to be a supercell of the crystal unit cell and the total structure factor, F(Q), is
calculated using the expression

F(Q) = 1

N

N∑
j,j ′=1

〈e−iQ·(Rj (0)−Rj ′ (0))〉 = 1

N

∣∣∣∣∣
N∑
j=1

e−iQ·Rj (0)

∣∣∣∣∣
2

(9)

where the sum is over all N atoms in the sample with positions Rj (t = 0), i.e. atoms in the
configuration cell. F(Q) represents total (energy-integrated) scattering—that is, both Bragg
and diffuse scattering. In conventional crystallography only the elastic Bragg scattering is
considered and the elastic structure factor is

S(Q) = 1

N

N∑
j,j ′=1

∫
〈e−iQ·Rj (0)eiQ·Rj ′ (t)〉 dt . (10)

To a first approximation (i.e. assuming small harmonic motions) the integral can be
performed and the sum over the N atoms in the sample (configuration) replaced by a sum
over the Nc atoms in the crystallographic unit cell, giving the more familiar expression

S(Q) = 1

Nc
e−WQ2

∣∣∣∣∣
Nc∑
k=1

e−iQ·〈Rk(t)〉
∣∣∣∣∣
2

. (11)

〈Rk(t)〉 are the time-average positions of atoms in the unit cell and W is the Debye–Waller
factor (DWF) which is related to the mean square deviation (msd) of atoms from their average
positions.
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S(Q) is therefore determined by the correlations between the time-average atomic
positions (equation (11)), while F(Q) is determined by the correlations between the
instantaneous positions (equation (9)). More simply put, the elastic structure factor gives
us a ‘time-average picture’ of the structure of the material, while the total structure factor gives
us an instantaneous ‘snapshot picture’. Both pictures are space averages (〈· · ·〉 indicating that
functions are averaged over all atoms taken as the origin), but only at T = 0 are they the same.
At other T the structure is not static but dynamic and so neither picture is ‘correct’. Which
picture is more useful depends on the problem being investigated. For most crystallographic
studies the time-average structure is the subject of interest and so elastic scattering is sufficient.
In a liquid, on the other hand, all atoms are diffusing, so there is no time-average structure
and hence no strictly elastic scattering—only the instantaneous structure is meaningful. For
crystalline structures with dynamical disorder, for example fast-ion conductors, both time-
average and instantaneous structures may be of interest.

While it would be possible to make RMC models of the average structure of crystalline
materials, based on the elastic structure factor, this has never been done except in simple tests.
There are numerous other methods of modelling average crystal structures that are considerably
faster. However, it is worth noting that there are Monte Carlo methods for crystal structure
solution/refinement that are conceptually very close to RMC modelling (e.g. [47]). On the
other hand, RMC modelling is able to model the instantaneous structure based on the total
structure factor, and hence provide information on local atomic correlations in crystals, which
is not possible with conventional crystallographic techniques.

Because an RMC configuration has periodic boundary conditions, F(Q) as calculated via
equation (9) is actually the Bragg scattering of the supercell. This consists of many peaks since
the supercell is large; the unit cell peaks are a small subset. If there are no atomic displacements,
then all the supercell peaks that are not unit-cell peaks have zero intensity. When there are
small atomic displacements, then all of the peaks can have non-zero intensity, but the unit-cell
peaks tend to be most intense. As the configuration size increases the additional supercell peaks
will merge and form a background—the diffuse scattering. This means that if we can produce
an RMC model that is large enough, then a direct calculation of the scattering via equation
(9) will give a reasonable approximation to both the Bragg and diffuse scattering. Because
the pattern is calculated directly in Q-space it can easily be convoluted with the experimental
resolution function.

If the sample is magnetic, then a simultaneous model of the magnetic structure can be
made, with the magnetic scattering being calculated according to similar principles [13].
In practice for an RMC model of reasonable size, say 4000 atoms, the supercell peaks are
sufficiently numerous but are not uniformly distributed in Q. At low Q, where the peaks
are sparse, it is necessary to smooth between them to obtain a good estimate of the diffuse
scattering [13, 46]. A particular advantage of RMCPOW is that the results for the average
structure can be compared directly to Rietveld refinement of the elastic structure factor from
the same data set. For highly ordered systems the results should be very comparable; for
disordered systems some differences can be expected since Rietveld refinement does not have
to simultaneously fit the diffuse scattering. On the other hand, Rietveld refinement is much,
much faster!

Tucker et al have developed a hybrid method for modelling total structure factors [48, 49].
In this case they can simultaneously fit to g(r), to F(Q) (calculated via Fourier transform) and
to the extracted elastic Bragg peak intensities (calculated via equation (11)). Although all of
this information comes from the same data set, the results will differ slightly depending on the
different weightings—g(r) giving more emphasis to short-range order and elastic intensities
to long-range order.
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4.4. Direct calculation method for single-crystal materials

While it might seem at first that single-crystal data would be preferable to powder diffraction
data, since they provide three-dimensional information rather than a one-dimensional average,
in practice there are some difficulties.

• Single-crystal data can usually only be measured at a smaller number of Q-points in a
restricted number of symmetry planes.

• They are much harder to correct and normalize on an absolute scale.
• The instrumental resolution affects Bragg peaks and diffuse scattering differently.
• Suitable samples are more difficult to produce.
• For neutron diffraction it is difficult to obtain consistent energy integration over the entire
Q-range. The (incident-wavelength-dependent) intersection of the energy integration path
and the phonon dispersion curves can lead to quite characteristic ‘shapes’ in the diffuse
scattering.

The direct calculation method has been implemented for single-crystal neutron diffraction
data in the RMCX program [11], but this has so far only been used to model diffuse neutron
scattering data, and not Bragg scattering data. In addition an RMC refinement routine has
been included in the diffuse scattering calculation program DISCUS which has been applied
to both neutron and x-ray diffraction data [50–52].

5. Related methods

Before discussing other related methods of structural modelling, one general point must be
made. Any method which produces a model which is in agreement with the available data is
equally as valid as RMC modelling, and possibly more valid since it may for example include
thermodynamic constraints, whereas RMC modelling does not. However, it is in fact rare that
structural models which are not data based actually agree with the data within their errors, but it
is not unusual for ‘good agreement’ to be claimed when the same level of agreement in an RMC
model would be taken as indicating a serious problem! It should always be remembered that
a suitable hard-sphere model will nearly always give a fair first approximation to a structure,
so the success of any model should be judged relative to this. On the other hand, it should
also be remembered that there is no simple linear relationship between ‘goodness of fit’ and
‘goodness of model’.

5.1. Some other variations

As has already been discussed, the statistical sampling method used in RMC modelling
has no particular significance—it is simply a means to obtain models that agree with the
data. However, other authors have tried to ‘improve’ RMC modelling by modifying the
statistical sampling. Toth and Baranyai have carried out a number of detailed tests, for example
constraining the entropy, and find that this makes the program more efficient [53–55]. Such
modifications may be useful, particularly for rather large models, but several points should be
made.

• The ‘standard’ RMC algorithm is certainly rather inefficient, but this has been a deliberate
policy in order to maximize its generality and ease of modification.

• New methods may have greater statistical validity in cases of ideal data. However, the
biggest problem with real data is systematic errors, in which case the more sophisticated
sampling methods may not be appropriate. New algorithms should therefore be tested on
real data.
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• Addition of such ‘theoretical’ constraints may give the impression that RMC modelling
is indeed trying to obtain the ‘correct’ structure, whereas we have stressed that this is not
the intention.

da Silva et al have used an approach where the radial distribution function is calculated
from an ensemble of consecutive configurations [56–59]. These configurations are therefore
correlated and hence this is not equivalent to either using a single very large configuration or
multiple independent configurations. In addition they use a very small value of σ , which can
result in essentially perfect agreement with the data (as long as the starting configuration is
sufficiently close to the final result). This is claimed as an advantage of the method. While it
may be so in the case of ideal data, there are few cases of real data where a perfect fit would be
sensible (or even possible). Another claim is that the new algorithm does not require the use of
‘ad hoc constraints’ such as atomic closest approaches. However, the imposition of a closest-
approach constraint is exactly equivalent to using a set of data for which g(r < r0) = 0 and
σ(r < r0) ≈ 0, so in this respect it is identical to ‘standard’ RMC modelling. The formulation
in terms of closest approaches is simply more transparent and physically understandable.

Adams and Swenson [60, 61] have introduced the possibility of constraining the bond
valence sum calculated from a configuration into the RMCA program. This is similar to the
inclusion of a simple form of potential. When applied as a relatively soft constraint it mainly
has the effect of preventing some structural defects that might otherwise occur on a statistical
basis. However, the bond valence of the final models can then be used self-consistently to
calculate, for example, ion conduction pathways (see section 7.2). A similar constraint has
been implemented in the RMCPOW program [62].

5.2. Metropolis Monte Carlo (MMC) simulation and other Monte Carlo methods

The method most obviously related to RMC modelling is MMC simulation. Whereas RMC
modelling requires data, MMC modelling requires an interatomic potential. MMC modelling
is therefore thermodynamically consistent but may not agree with experimental data, while
RMC modelling agrees with data but is not thermodynamically consistent. In general MMC
modelling is not widely used for producing structural models of ‘real systems’, but is widely
used for making rather large statistical models of ‘idealized systems’, e.g. substitutional alloys
or magnetic Ising models. MMC modelling is also used in a number of potential refinement
methods, as discussed in the next section.

Two further Monte Carlo methods should be mentioned because they are sometimes
confused with RMC modelling. The inverse Monte Carlo method [17, 18] is a very specific
method for deriving effective pair interaction energies in binary alloys, based on structural
models which are themselves determined by the Monte Carlo method of Gehlen and Cohen [63]
from short-range-order parameters derived from diffuse scattering data. ‘Simulated annealing’
refers to a general Monte Carlo method for attempting to reach the global minimum of the
function being sampled [64]. For example in MMC modelling one might wish to find the
global energy minimum (true ground state) of the system being simulated. This is achieved
by gradual reduction of the control variable, in this case the temperature, from a high value—
hence the name given to the method. While simulated annealing is occasionally used in RMC
modelling to avoid a local minimum with an unacceptably high value of χ2, it must be stressed
again that there is no global minimum in RMC modelling. Any configuration with a suitably
low value of χ2 is a valid configuration. The configuration with the lowest χ2 can actually be
worse since it clearly fits to details of the data errors.
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5.3. Potential refinement methods

A number of methods have been developed which produce structural models from experimental
data, but via the refinement of an interatomic potential (e.g. [65–70]). Probably the most
extensively used of these is the empirical potential structure-refinement (EPSR) method due
to Soper [68]. At first it seems that such methods must better than RMC modelling, since
the models should agree both with the data and with a potential. However, some caution is
required in this respect.

Potential refinement methods all work in the same basic manner. A starting potential is
used to generate a structure, e.g. via MMC modelling, and calculate for example a structure
factor. This is compared to experimental data. The difference in structure factors or radial
distribution functions is then used to generate a modified potential and the scheme is iterated.
When the calculation and experiment agree within the required limits, the potential can then
be used to generate multiple configurations (all agreeing with the data), which can be used
to calculate for example many-body correlations with high statistical accuracy, as shown in
figure 3. The statistical sampling and thermodynamic consistency are certainly better than with
RMC modelling, and the use of a potential also prevents some structural defects. However,
several questions must be asked.

• Does the use of a potential with a specific functional form bias the model that fits the data,
and what happens if the form is inappropriate? It is clear that there must be some bias. In
many cases, where the system can be described by an effective two-body potential, this
is probably not a problem, but where many-body forces are significant (which does not
necessarily mean that they are large) the bias may prevent certain atomic configurations.
However, there is of course no guarantee that RMC modelling will do better. For systems
close to a transition where the local potential energy may fluctuate significantly, e.g. a
metal–insulator transition, the imposition of a simple global form of the potential might
give bad results. (The same would also apply to any simulation using a simple global
potential.)

• Can the potential derived be used for any other purpose than producing a structural model,
for example in a molecular dynamics simulation? Here the answer is, probably not. In a
simple case such as modelling liquid argon based on a Lennard-Jones potential, where it
is already known that the potential form is suitable and there are only two parameters to
derive, it would be surprising if there was a problem. However, Soper [34] has performed
a series of test studies which show that a variety of potentials can be generated, both in
atomic and molecular systems, which reproduce the original structure factors and even
the original three-body correlations, i.e. that give an equally good representation of the
structure. This suggests that derived potentials, at least those based on methods developed
so far, are useful as a tool within the structural modelling program, but should not be used
outside of it.

It should be remembered that if a suitable form and initial parameters are chosen for the
potential, the resulting structure factor may well agree with the available data even if it contains
large errors (e.g. [71]). Poor or limited data only contain limited information, and there is no
method that can extract more information than is provided. It can also be noted that the effect
of certain types of data error gives predictable results in RMC models, for example a sloping
background at high Q often gives a sharp spike or cut-off at low r in g(r). The imposition of
a potential form will spread these effects in a less predictable fashion.

With these caveats in mind it is clear that for modelling the structure of many liquids,
a method such as EPSR has sufficient advantages over RMC modelling that it should be



Reverse Monte Carlo modelling R895

recommended. There is less experience with glass structures, though metallic glasses are
almost certainly suitable subjects since they are rather close to hard-sphere systems. Whether
the method is useful for crystalline materials is not known. The differences between the
methods can be summarized in the following way—RMC modelling is more general and
hence can be applied to almost any system, EPSR is more specific and will provide better
results in appropriate cases.

5.4. Molecular dynamics simulation

Classical molecular dynamics (MD) simulation requires an input interatomic potential. Like
MMC modelling it is thermodynamically consistent, with the obvious major advantage
that both structure and dynamics can be studied. If the MD simulation reproduces the
experimental structural data, then it is without doubt the most appropriate method. If there
are differences, then the simulation is not necessarily invalid—this entirely depends on the
level of difference and the purpose of the simulation. MD modelling can also be tested
by comparison with dynamical information, e.g. diffusion constants, phonon dispersions or
vibrational density of states.

Methods of ab initio molecular dynamics simulation, such as the Car–Parrinello method
[72], are in principle potential independent, giving a full quantum mechanical treatment to the
electrons. In practice only the valence electrons are treated this way and pseudopotentials are
used to describe the core electrons. The method is highly computationally expensive, so system
sizes are typically limited to under 100 atoms and run times to a few ps. Finite-size effects may
therefore be significant, though some techniques have been developed that allow more realistic
comparison with experimental structural (and dynamical) data [73]. Some simulations have
shown reasonable agreement with experiment but some have shown serious discrepancies.
Despite this, a major advantage of the method is that it can give information on the valence
electron distribution, i.e. on bonding, particularly in cases where there are significant local
fluctuations. An example is given in section 6.2.

In general it can be considered that MD simulation and RMC modelling are complementary
methods—they may sometimes address the same problem but in different ways. A recent
approach is to use RMC modelling to help in refining potentials for improving the agreement
between MD simulation and experiment (e.g. [74]).

6. RMC modelling of liquids

6.1. Metal–insulator and metal–semiconductor transitions in elemental liquids

A ‘classical’ analysis of liquid structure data involves determination of the radial distribution
function and then interpretation of peak positions and average coordination numbers.
Sometimes this reveals very little. In the case of expanded Cs, for example, there is an
interest in the metal–insulator transition that takes place in the vicinity of the critical point.
Structural studies along the coexistence curve show a first-peak position that varies very little
as a function of decreasing density and an average coordination number that has a remarkably
linear decrease [75]. However, RMC modelling is able to show that at low densities these
features imply a structure within which the average coordination ‘hides’ a considerable non-
uniformity in the local atomic distribution, with a wide variation in coordination number [76].
The metal–insulator transition appears to be related to a percolation transition in the Cs ‘bonding
network’ [77]. The situation in Hg is somewhat different. Here it is possible to identify two
different local coordinations which may be associated with ‘metallic’ and ‘covalent’ bonding
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environments [78]. At high densities the metallic bonding network dominates and so the
system is overall metallic. At intermediate densities there are interpenetrating metallic and
semiconducting networks, so the net result is still metallic. The metal–semiconductor transition
occurs at low densities due to a percolation transition in the metallic bonding network [79].
This is illustrated in figure 5.

6.2. Polyanions in liquid-metal alloys

One of the more controversial RMC studies of liquid structure concerns the possible existence
of polyanions, or ‘Zintl ions’, in liquid-alkali–Pb and related alloys [80]. The basic idea
is that in KPb, for example, the alkali can donate electrons to the more electronegative Pb,
which then form Pb4−

4 tetrahedral clusters (‘Zintl’ ions) which are isoelectronic with the stable
P4 molecule. This would explain the sharp increase in (electronic) resistivity for KxPb1−x
alloys at the equimolecular composition. Zintl ions are found in the equivalent crystal
structures. Some evidence for clustering comes from diffraction data which are consistent
with a Pb–Pb coordination close to three and show a strong ‘first sharp diffraction peak’
(FSDP) in the structure factor at ∼1 Å−1, which was suggested to be due to intercluster cor-
relations [81]. Molecular dynamics simulations and other theoretical calculations that included
tetrahedral Pb4 clusters gave reasonable quantitative agreement with diffraction data. However,
thermodynamic calculations suggested that the proportion of Pb in tetrahedra should be only
about 25% close to the melting point, and decrease rapidly with increasing temperature.

RMC modelling of a single structure factor from neutron diffraction agreed independently
that the FSDP was associated with Pb [80]. This by itself can be identified as a definite success
for RMC modelling, since there is no reason per se why it could not also have identified it
as due to K, having no prior knowledge of the likely bonding. (Similar results were obtained
for a number of other systems (e.g. [82])). By the use of varied coordination constraints it
was possible to show that models with a range of Pb4 tetrahedra between 25% and 100% were
consistent with the data. The former model could be better characterized as a predominantly
threefold-coordinated Pb network.

Here it is useful to make another specific point concerning what is, or is not, shown by
specific features in diffraction data. Even as recently as 1999, Hafner et al [83] stated ‘However,
so far reverse Monte Carlo calculations agree only on the existence of a certain fraction of
polyanions, but in a much smaller number and with less perfect structures than the sharpness
of first sharp diffraction peaks in the static structure factors would suggest’. However, this is
illogical. Since the RMC models fit the data, they reproduce the sharpness of the FSDP, so the
FSDP does not necessarily suggest a large number of perfect Zintl ions.

So did RMC modelling make any useful contribution, being only able to say that the Zintl
ions might exist, but then again they might not? The answer must be yes, particularly by
indicating that a number of solutions were possible. Studies using ab initio MD simulation
[84, 85] (in which it is not necessary to pre-decide on Pb4 units, as it is with classical MD
modelling) supported the idea of a more network-like structure, with an atomic arrangement
that was remarkably consistent with the unconstrained RMC model. Later work [86] showed
how electrons could localize preferentially around tetrahedral groupings, in this case Sn4 in
KSn, even though there were also other Sn in the local region which would be identified as being
coordinated to the same grouping. Related work shows that individual polyanions may only
have a relatively short lifetime, of order a few ps; i.e. they are not ‘molecules’ [87]. However,
the electron thermalization is much faster than 1 ps, so as long as there are on average a high
percentage of polyanions at any time, then there will be a high degree of electron localization
and a high resistivity. Figure 6 shows two pictures of Pb atoms from an unconstrained RMC
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(a) (d)

(b) (e)

(c) (f)

Figure 5. 10 Å thick sections of configurations for expanded Hg at (a) 293, (b) 773, (c) 1073,
(d) 1473, (e) 1673 and (f ) 1803 K. Semiconducting atoms and metallic bonds are drawn as balls
and sticks respectively [79].
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(a) (b)

Figure 6. Pb atoms only from a section of an RMC model for KPb at 873 K [80]. (a) Bonds
between Pb atoms less than 3.6 Å apart in identifiable tetrahedral clusters. (b) Bonds between all
Pb atoms less than 3.6 Å apart. Note that bonds are only drawn from atoms within the section, so
some tetrahedra appear ‘incomplete’.

model for liquid KPb. In one case the ‘picture’ is of isolated tetrahedra, consistent with a high
resistivity, while in the other case the picture is of a network, but the model is the same. This
illustrates how apparently different ideas can be consistent with a single model.

7. RMC modelling of glasses

7.1. Vitreous silica and silicates

RMC modelling of glass structures has developed continuously and can be well illustrated
by the example of vitreous silica. The early model of Keen and McGreevy [7] used no
coordination constraints, but was the first to combine neutron and x-ray diffraction data. Later
on, coordination constraints were introduced by Wicks and McGreevy [22] and additional
bond-angle constraints by Keen [27]. The most recent work by Kohara [28] uses high-Q-
range neutron and hard-x-ray diffraction data; the quality of the data is clear from the very
sharp and well defined peaks in the partial radial distribution functions, as shown in figure 2.
For alkali silicates the results of magic angle spinning NMR measurements were incorporated
into the models [22] to provide the proportions of Qn species, that is of Si with n non-bridging
oxygens. Recently, combined RMC/MD studies have been used for modelling rather complex
oxide glasses [74].

7.2. Fast-ion-conducting glasses

Probably the consistently most successful application of RMC modelling has been in the study
of fast-ion-conducting glasses [88]. It is useful and interesting to follow this from a historical
perspective, since it illustrates rather well many of the particular advantages of RMC modelling.

By adding Ag or Li halides to ‘traditional’ glass formers such as (Ag2O)x(B2O3)1−x or
AgPO3 it is possible to produce glasses with a high ionic conductivity. These have possible
applications in e.g. microbatteries. However, the glass transition temperature, Tg , tends to be
lower when the conductivity is higher, and if too much salt is added, eventually crystallization
occurs and the high conductivity is lost. The questions to be answered are therefore (a) what
causes the high conductivity and (b) is it possible to increase Tg or correspondingly the glass
formation range? In addition, the first neutron diffraction studies [89] showed the existence
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of a sharp peak in the structure factor at an anomalously low Q-value, 0.7–0.8 Å−1, whose
intensity appeared to be correlated with the AgI content and hence with the high conductivity.
This aroused considerable interest.

Initially it was considered that an RMC model based on a single neutron diffraction pattern
would be unreliable for a four-component glass, e.g. (AgI)x(AgPO3)1−x , since conventionally
ten separate measurements are required to obtain the ten partial structure factors. This ignored
the power of constraints. The structures of crystalline analogues contain polymeric phosphate
chains, with two bridging and two non-bridging oxygens, cross-linking occurring via ionic
bonding, so the initial configurations were built containing such chains, using a method similar
to that outlined for potassium silicate in section 2.4. This is illustrated in figure 7.

P AgO I

Figure 7. Steps in the creation of an initial RMC configuration for (AgI)0.5(AgPO3)0.5 glass [24].
Firstly CHSMC is run for P atoms only with a twofold-coordination constraint. This creates a
configuration of P chains. Bridging O atoms are added at P–P bond centres and two non-bridging
O close to each P atom. CHSMC is run with a fourfold P–O constraint until all cut-offs are satisfied.
Finally Ag and I are added at random and CSHMC is again run until cut-offs are satisfied. The
resulting configuration shows a FSDP even before RMC fitting.

Even before fitting to the data, at the number density corresponding to (AgI)0.5(AgPO3)0.5,
a FSDP was found, while at the (lower) density corresponding to AgPO3 there was no FSDP,
in accord with experiment. However, the FSDP occurred in the partial structure factors
corresponding to P–P, P–O and O–O pairs, whereas the explanation in the literature was
that it was due to AgI clustering and hence should be related to Ag and I correlations. This
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could be tested in a very simple way. Neutron diffraction is dominated by P and O scattering,
whereas x-ray diffraction is dominated by Ag and I. If the RMC model was correct, then x-
ray diffraction should show a weak FSDP, whereas if RMC modelling was wrong, it should
show a very strong FSDP. The experiments confirmed the RMC prediction. The correlation of
FSDP intensity and AgI content was explained by the fact that adding AgI ‘pushes apart’ the
phosphate chains, which gives rise to the FSDP. Finally a combination of neutron diffraction,
x-ray diffraction, Ag K-edge EXAFS and I LIII-edge EXAFS was used to make models for a
series of glasses [24] (with the later addition of phosphorus NMR data [23]).

The RMC models were used to investigate the distribution of free volume available for
Ag+ conduction—i.e. conduction pathways. As the salt content increased, the connectivity
of the conduction pathways also increased, giving higher conductivity, but the degree of
cross-linking between phosphate chains decreased, lowering Tg and leading eventually to
crystallization. Hence it could be suggested that it would effectively not be possible for this
class of materials to obtain significantly higher conductivity at the same Tg , or higher Tg at the
same conductivity. This prediction has not been disproven by any subsequently produced glass.
Swenson and Börjesson [90] extended the free-volume argument to show that the conductivity
can be predicted from the densities of the doped and undoped glasses for a wide variety of
systems.

From the RMC models it was found that almost all Ag occur in mixed (P, O and I)
environments, so there is almost no atomic arrangement that could be described as an AgI
cluster. If constraints were applied to increase clustering, then the data could not be fitted
properly. Strangely, despite the fact that the RMC prediction of the origin of the FSDP was
confirmed quite clearly, as described above, and a number of subsequent studies on a wide
range of glasses have produced consistent results [88], there are still papers published in the
literature which assign the FSDP to AgI clustering, though mainly on the basis of data which
are relatively indirectly linked to the structure (e.g. [91]).

The most recent development has been the use of bond valence constraints. Adams and
Swenson [61] have applied these to a number of different glasses, producing basically similar
models but with the added consistency of a physically reasonable bond valence, and a smaller
number of ‘structural defects’. ‘Free-volume’ pathways then become ‘bond valence’ pathways
for ionic conduction, which can be used to make more quantitative predictions. An excellent
quantitative agreement between the RMC models and the measured ionic conductivities is then
found [60]. Figure 8 shows the Ag+ conduction pathway for (AgI)0.6–(Ag2O–2B2O3)0.4.

8. RMC modelling of disorder in crystals

As discussed in section 4.3, the application of RMC modelling to single-crystal diffraction
data has so far been somewhat problematic and there have been relatively few applications.
The most detailed work has been a study of ice by Nield et al [92–95] using the program
RMCX and of stabilized zirconias by Proffen and Welberry [96–98] using the program
DISCUS.

There have been numerous RMC studies of crystalline fast-ion conductors using powder
diffraction data, primarily Ag and Cu halides and chalcogenides [42, 99–103]. In one case
RMC modelling, experiment and MD simulation have been compared in detail [104]. More
recently there has been a very detailed study of disorder in the various crystalline polymorphs
of SiO2 [49, 105], where now the atom positions are constrained by the covalent Si–O bonding
network. Another type of disorder that can be modelled is the rotational disorder of molecules.
Here we give two examples—both of which give rather clear conclusions.
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Figure 8. A 5 Å thick section through the Ag+ bond valence isosurface for an RMC model of
(AgI)0.6–(Ag2O–2B2O3)0.4 glass [61]. Ag—large grey spheres; I—black spheres; borate is shown
as a network with small spheres for B (dark grey) and O (light grey).

8.1. Rotational disorder

One of the simplest illustrations of the use of RMC modelling in crystals is a study of rotational
disorder in NH4Cl, or rather its deuterated analogue ND4Cl [106]. Cl− ions form a simple
cubic structure. The tetrahedral ND+

4 occupy the cube centres and hence can (on average) have
two equivalent orientations (figure 9(a)), between which they can rotate at higher temperatures.
Two questions arise: how do they rotate and are there correlations between the orientations of
neighbouring ND+

4?
The RMC model shown in figure 9 has been obtained by fitting to the total structure

factor as measured by means of neutron diffraction (figure 4) using the convolution method
(section 4.2). It can be used to answer these questions very easily. Note that the 2 × 4 = 8 D
positions in figure 9(a) form the corners of a cube. If you look carefully in figure 9(b) you
can see the orientations of individual ND+

4. No particular correlations are found between
neighbouring ions. Figure 9(c) shows that there are a variety of orientations, not just those
shown in figure 9(a). This is of course obvious—if the ions rotate, then they must spend
at least some time at ‘intermediate’ orientations and in addition there are ‘normal’ thermal
vibrations. Figure 9(d) shows this more clearly, but also shows that the D distribution is not
completely spherical, so the ‘intermediate’ orientations are less common than the ‘equilibrium’
orientations of figure 9(a). Figure 9(e) then shows that the most likely path between the
‘equilibrium’ orientations is approximately along the ‘edges’ of the D ‘cube’. D positions on
the ‘faces’ of the ‘cube’ are rare. Translated into more scientific language, this means that
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(a)

(b) (c)

(d) (e)

Figure 9. Different views of the ‘structure’ of ND4Cl [44]. (a) ‘Conventional’ crystal structure
showing the two ND+

4 orientations. (b) A 10 Å thick slice from an RMC model of 10 368 atoms
(12 × 12 × 12 unit cells). (c) A projection of the whole model. (d) As (c), but individual atoms
are now translated into a single unit cell. (e) An isodensity surface of the distribution shown in (d).
The D density is 0.27 of its maximum value.

ND+
4 rotate preferentially about twofold axes, with less than 5% rotating about threefold axes.

A similar study of ND4I has compared RMC modelling and maximum-entropy reconstruction
methods [107].
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8.2. Proton conduction

A more complex example also concerns rotational disorder, but now coupled with diffusion.
The ‘paddle-wheel’ model was developed many years ago to explain ion conduction in Li2SO4

[32]. The basic idea is that as SO2−
4 ions rotate, they carry with them the small Li+ ions;

i.e. rotation and diffusion are highly correlated. This led to arguments stretching over nearly
two decades, since others believed that uncorrelated diffusion (percolation) could also explain
the experimental results [104]. The ‘paddle-wheel’ model was invoked to explain many other
systems, sometimes under different names such as the ‘turnstile mechanism’. For example the
model was used to explain proton conduction in CsHSO4 on the basis of quasi-elastic neutron
scattering (QENS) data [105].

Figure 10 shows results from an RMC model of CsDSO4 [106]. Although the SO2−
4 ions

are very disordered due to their rotations and vibrations, a preferential orientation can still be
identified—clusters of O positions can be seen forming the vertices of tetrahedra (figure 10(a)).
The D distribution is also highly disordered and follows a curved path very similar to that
proposed on the basis of QENS data. One thing that is immediately obvious is that the D
pathway intersects strongly with the O positions occupied when the tetrahedra are rotating.
Since D and O cannot be in the same place at the same time, rotation and diffusion must be
correlated.

Figures 10(b), 10(c) show the partial radial distribution function, gOD(r). The first peak
occurs at the same distance at high and low T , which is the same as the shortest O–D distance
in the time-average low-T structure, but not in the time-average high-T structure. Actually
from figure 10(a) it is clear that the high proton diffusion rate at high T makes it completely
meaningless to try to define a time-average D position—D will always spend more time away
from such a position than at it. The other thing to note is that the peak in gOD(r) is still sharp
at high T (in fact even sharper than at low T ), despite the high level of disorder in both O and
D positions shown in figure 10. This means that not only are SO2−

4 rotations and D+ diffusion
correlated—they are highly correlated! For the majority of the time they must effectively exist
as DSO−

4 ions, with individual D being exchanged between chains of neighbouring ions in a
way that is also highly correlated—a ‘multi-paddle-wheel’ mechanism.

It is interesting to note that a similar study of Li2SO4 concluded that the rotation/diff-
usion correlation was much weaker—effectively both ‘paddle-wheel’ and ‘percolation’
mechanisms operated with approximately equal probability [32]. This explains the long-
running controversy—both were right!

9. RMC modelling of magnetic structures

9.1. Metallic glasses

In the same way that RMC modelling can be used to model an atomic structure, it can also be
used to model a magnetic structure, except that now two models are required—one of atoms
and the other of magnetic moments which are associated with some of the atoms. In order to fit
the data, the atoms must be moved (which can alter the position of the magnetic moments and
hence changes both the atomic and magnetic scattering) and moments must be rotated (which
only changes the magnetic scattering). For modelling magnetic glasses a Fourier transform
method is used, similar but not identical to equation (2). This is implemented in the program
RMCSPIN [10].

The first such RMC study, of Dy0.7Ni0.3 glass [10], used neutron diffraction data which had
been measured with ‘double-null’ isotopic substitution [112], taking advantage of the special
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Figure 10. (a) An RMC model of the high-temperature proton-conducting phase of CsDSO4 [106].
The individual atom positions in a 5376-atom (8×8×3 unit cell) model have been translated into a
single unit cell—S are light grey, O are dark grey and Cs are not shown. The D density distribution
is represented as a contour plot in two planes. (b) gOD(r) for CsDSO4 in the non-conducting phase
at 295 (solid curve), 333 (dashed curve) and 373 K (dotted curve) and (c) in the conducting phase
at 412 K (solid curve). Bars indicate O–D distances determined from the respective time-average
crystal structures.

circumstance that both Dy and Ni have isotopes with both positive and negative scattering
lengths. This enabled rather uniquely the direct experimental separation of the atomic and
magnetic scattering, making modelling much easier. Later studies of (Dy1−xYx)0.7Ni0.3
[113, 114] and Dy0.7Fe0.3 [115] used the fact that these glasses were approximately structurally
isomorphous with Dy0.7Ni0.3 and hence could use the same structural model. One general
result from these models was that the magnetic structures were rather more disordered than
had been expected, but by including local constraints on the magnetic structure it could be
shown that significantly more ordered models would not be consistent with the data. The
angular correlation function for magnetic moments, 〈µ·µ〉r (equivalent to the radial distribution
function for atomic structures), cannot be derived directly from the measured scattering because
of the form of the relevant equations, but only on the basis of a three-dimensional structural
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model, e.g. RMC modelling. For these glasses 〈µ · µ〉r has a highly oscillatory form very
similar to that predicted for a RKKY interaction.

Fe0.91Zr0.09 glass was modelled on the basis of neutron and x-ray diffraction data (including
anomalous scattering) [116]. In this case 〈µ · µ〉r is relatively flat, as expected for long-range
ferromagnetic order. This study has highlighted the role that the variation in local (nearest-
neighbour) structural environment, which is an inherent feature of the essentially random
close-packed structure, can play in determining the magnetic interactions and structure in
magnetic glasses on a wide range of length scales. On the basis of the RMC model for a
single composition, it was possible to predict the variation of the magnetic phase diagram as
a function of composition. Some results are illustrated in figure 11.

(a) (b)

(c) (d)

Figure 11. RMC models for Fe1−xZrx glasses [116]. (a) x = 0.09. Fe atoms (dark grey), Zr
atoms (light grey). (b) x = 0.09; bonds are drawn between neighbouring Fe atoms in locally anti-
ferromagnetic environments. (c) x = 0.75; (d) x = 0.6; bonds are drawn between neighbouring
Fe atoms in locally ferromagnetic environments.
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9.2. Colossal-magnetoresistance (CMR) materials

RMC modelling of crystalline magnetic materials cannot use the Fourier transform method,
and must be done via direct calculation (equivalent to equation (9)). This is implemented in
the RMCPOW program [13, 117].

CMR materials have been known about for almost 40 years, but in the last decade there
has been a revival of interest due to the realization that thin films could be made with the
potential for applications in devices such as magnetic recording heads. Various experimental
and theoretical studies have invoked a variety or combination of mechanisms to explain
their extreme properties—double exchange, lattice polarons, magnetic polarons, spin–lattice
coupling etc.

Some results from a structural model for the CMR material La0.8Sr0.2MnO3 are shown
in figure 12 [118]. It is worth stressing that the average structure of this model is completely
consistent with that determined from Rietveld refinement, and with other studies in the
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Figure 12. Various correlations relating to magnetic ordering in La0.8Sr0.2MnO3 [118]. (a) The
radial distribution function for Mn atoms, gMnMn(r). (b) The average cosine of the angle between
magnetic moments on Mn atoms as a function of their separation at 15 (downward-pointing
triangles), 200 (upward-pointing triangles), 300 (diamonds) and 900 K (squares). (c) Variations of
short-range lattice distortion (crosses), short-range magnetic order (closed squares) and long-range
magnetic order (open squares) as a function of temperature. Dashed curves are drawn as guides to
the eye. (d) The spin–spin cosine distribution function, p(cos θ(r), r), at 325 K. Only distances
corresponding to Mn–Mn near neighbours, 3.4 < r < 4.4 Å, are shown.
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literature. The radial distribution function for the magnetic Mn atoms (figure 12(a)) shows
the distances between magnetic moments. The average cosine of the angle between moments
as a function of distance (figure 12(b)) has a high value at low T where there is long-range
ferromagnetic order (0.6 is close to the predicted quantum mechanical expectation value). As
T increases above the magnetic ordering temperature, the cosine decreases to zero at long
distances but remains finite at short distances, indicating that short-range magnetic ordering
remains (magnetic polarons). At the same time there is the onset of short-range lattice disorder
(lattice polarons) which can be monitored through the width of the first peak in gMnO(r)

(figure 12(c)).
These results show that lattice and magnetic polarons coexist at high temperatures.

However, the model can reveal even more subtlety. If you look carefully at figure 12(b) you can
see that at high T the average cosine actually rises steeply as r decreases for distances within
the first peak of gMnMn(r). The full cosine distribution function, shown in figure 12(d), explains
this. When two Mn moments are slightly closer together they have a higher probability of being
ferromagnetically aligned (cos θ = 1), giving the peak at the back right in the distribution.
If they are slightly further apart they have a higher probability of being antiferromagnetically
aligned (cos θ = −1), giving the peak on the front left. Lattice and magnetic polarons
are therefore coupled—indeed they are one and the same. In the case of La0.67Ca0.33MnO3

[119, 120] the variation between the strengths of the local ferromagnetic and antiferromagnetic
alignments is greater. The local antiferromagnetic ordering is strongest just above Tc, with a
clear correlation with a local orthorhombic lattice distortion, before the local ferromagnetic
ordering ‘wins’ and long-range order sets in. It should be emphasized that RMC modelling is
unique in its ability to model this type of local lattice/magnetic order.

9.3. Magnetic structure determination

It turns out that the RMCPOW program is also a useful tool for aiding ab initio determination of
(time-average) magnetic structures from powder diffraction data [121]. An example is shown
in figure 13. In this case only the Bragg peaks are fitted and a small model is used, chosen to be
consistent with possible magnetic supercells. The method has two main advantages. Firstly it
can start from a random initial structure, so no prior idea or knowledge is required. Secondly
it may be possible to find more than one spin structure which is consistent with the data. These
can either be distinguished on the basis of other available information, or used to suggest further
experiments that might distinguish them, e.g. single-crystal or higher-resolution studies.

10. Future developments

10.1. RMCA

The RMCA program has now been in use for almost ten years, with only minor modifications.
Some improvements are required of the methods for dealing with EXAFS data [122], which
have been used relatively little, and it would make sense to combine RMCA and RMCSPIN
programs. There is a general trend towards the use of larger structural models that would be
helped by including techniques for improving efficiency, e.g. link cell methods such as are
used in large MD models. Otherwise it is the extension towards new data types that would
be of most interest. For example, the ability to include different types of NMR data, infra-
red absorption data or Raman scattering data could be extremely powerful. However, this is
hampered by the theoretical problems of calculating appropriate coupling constants, rather
than the implementation in RMC modelling.
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Figure 13. (a) Time-average crystal structure of the double perovskite Ba2FeWO6 [120]. Magnetic
(Fe) ions occupy alternate octahedra. Possible average magnetic structures obtained by RMC
modelling are (b) collinear and (c) non-collinear. (d) The fits to the data are almost identical. Solid
curves show the data, collinear and non-collinear fits; dotted curves show the magnetic contributions
only; the dashed curve shows the difference of the magnetic contributions × 10.

10.2. RMCPOW

Inclusion of additional data types, in particular EXAFS data, is also a development goal for
RMCPOW. As discussed previously, single-crystal data are more problematic than powder
diffraction data, but in general terms one can see that it would be advantageous to be able to
combine these as well. A good example that illustrates the need is a study of Mn0.6Ta0.4O1.65

[123]. This material shows lattice diffuse scattering due to substitutional disorder of Mn/Ta
and O/O vacancies and associated relaxation of the O sublattice. In neutron diffraction there
is also magnetic diffuse scattering. X-ray and neutron diffraction data have been combined
(figure 14(a), 14(b)), but this information is not sufficient and fails to distinguish sufficiently
whether some diffuse scattering peaks are due to atomic or magnetic disorder [46]. Mn or Ta
EXAFS data would help. An alternative is the use of polarized neutron diffraction to separate
the lattice and magnetic diffuse scattering [124], as shown in figure 14(c) [125]. Figure 14(d)
shows a calculated single-crystal pattern based on RMC modelling of powder diffraction data.
It can be noted that the pattern is far from isotropic, even though it is based on ‘isotropic’ data.
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Figure 14. Structure factors for Mn0.6Ta0.4O1.65 from (a) neutron and (b) x-ray diffraction;
data (solid curves), RMC fit (dashed curve) and the difference (dash–dot–dotted curve); lattice
(dotted curve) and magnetic (dash–dotted curve) diffuse scattering [122]. (c) Structure factors for
polarized neutron diffraction; nuclear (solid curve) and magnetic (dashed curve) scattering [124].
(d) The single-crystal x-ray diffraction pattern calculated from the RMC model fitted to the powder
diffraction data shown.

In fact the positions and directions of the diffuse scattering streaks agree qualitatively with
experimental results. The challenge will be to deal with the data corrections, normalization,
resolution etc, so that a quantitative comparison can be made.

10.3. New applications

A version of RMC modelling for modelling small-angle scattering data for colloids has been
developed [126]. However, this is a special case in that the particles are effectively treated as
large ‘atoms’ and the only variation necessary on the standard RMC procedure is to include the
possibility of polydispersity and a scattering form factor (as is already done for x-ray diffraction
data). To treat general small-angle scattering data it will be necessary to have ‘variable-
geometry’ particles. One method for doing this is the ‘dummy atom’ approach of Svergun
[127], where a variable-shape large particle (e.g. a biological macromolecule in solution) is
represented by a collection of smaller ‘dummy atoms’. This has considerable similarity to RMC
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modelling, including the use of a type of coordination constraint, in this case called a ‘looseness
criterion’, which controls the compactness of the large particle. Although a simulated annealing
algorithm is used to attempt to approach a global minimum, Svergun also notes that the concept
of a unique solution is meaningless. There is clear scope for further development of this method
to enable application to more general problems than shape reconstruction of single particles.
Either the scale could be extended upwards to consider correlations between collections of
particles, or downwards towards a more atomistic description.

A program for RMC modelling of reflectivity data has been tested [128]. However, this
has the problem that the data has low (real-space) resolution, whereas the RMC model is
intrinsically high resolution. The smoothed atomic density may reproduce the data but the
individual atomic positions may not make sense unless strong local constraints are applied,
and suitable constraints are not necessarily known. However, there may still be possibilities
for development in surface studies, for example modelling of off-specular reflectivity data (for
which there is currently no general method), particularly for magnetic materials, or surface
diffraction data.

A rather different possibility would be in residual stress analysis [129]. In this case the
model would be a stress map rather than a set of atom positions. However, the advantages
of RMC modelling can be readily translated. As it is an inverse method, it will be easy to
include experimental effects (surfaces, absorption, wavelength and intensity variation in the
incident beam etc) in the calculation before comparison with the measured data, whereas these
are very difficult to deal with by direct methods. Constraints can be applied (e.g. maximum
stress gradient) and different data types can be combined. In addition there is a rather natural
connection with the widely used method of finite-element modelling, which can be used to
calculate the initial stress map.

10.4. Reverse molecular dynamics

As has been discussed earlier, RMC modelling does not produce a unique model. While
this is an advantage, nevertheless one should obviously aim to reduce the range of possible
models. Diffraction data can be relatively insensitive to some aspects of the structure, but
dynamics can be much more sensitive. The next step is therefore to aim to be able to include
dynamical information in RMC models, with the long-term goal of producing full dynamical
models based on experimental data—‘reverse molecular dynamics’ (RMD). Development of
a prototype algorithm is already under way [130].

11. Conclusions

RMC modelling is now a well established technique and has proved itself able to contribute
to our understanding of the structures of a very wide range of materials. It offers unique
possibilities for the quantitative combination of a range of different types of complementary
experimental data, and for studies of local magnetic order, and there are still many prospects
for further development. It would therefore seem that the method is ‘here to stay’.

Apart from the detailed aspects that have been discussed in this paper, there are a three
general messages that should be taken away. Firstly, accurate and quantitative data are valuable,
regardless of whether the data consist of sharp peaks (as in crystalline diffraction) or broad
oscillations (as in liquid-state diffraction or EXAFS). Secondly, the act of making ‘proper’
(e.g. atomistic) structural models leads to considerable insight, often regardless of the exact
method used or whether the models agree with the data. Thirdly, there is nothing very clever
about RMC modelling—it is simply a combination of the first and second points.
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